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Abstract 19 

Continuous time random walks (CTRW), multi-rate mass transfer (MRMT), and 20 

fractional advection-dispersion equations (FADEs) are three promising models of 21 

anomalous transport as commonly found in natural streams. Although these paradigms are 22 

mathematically related, understanding their advantages and limitations poses a challenge 23 

for model selection. In this paper, we quantitatively evaluate the advection-dispersion 24 

equation (ADE), fractional-mobile-immobile (FMIM), fractional-in-space (sFADE), 25 

fractional in space transient storage (FSTS), truncated time-fractional model (TTFM), and 26 

CTRW models with truncated power-law waiting time distribution (CTRW-TPL) by fitting 27 

them first to synthetic data. We then applied these models to observations from tracer 28 

experiments conducted in several rivers. Based on the extensive analysis, we conclude that 29 
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the FSTS model 1β = −  ) is comparable, if not superior, to the other nonlocal models 30 

evaluated in the paper; therefore, the model represents an alternative to existing models for 31 

simulating stream solute transport for spatially-homogeneous flows.  32 

Keywords:  33 

transient storage; fractional derivative; hyporheic zone; continuous time random walk 34 

1. Introduction 35 

Anomalous or non-Fickian transport of solutes is often found in streams at all scales 36 

(Burnell et al., 2017; Edery et al., 2010; Liu et al., 2017; Shen and Phanikumar, 2009; 37 

Vishal and Leung, 2015). Exchange of water and solutes with the hyporheic zone produces 38 

delays in transport relative to the mainstream flow, often leading to long (or heavy) tails in 39 

concentration breakthrough curves (BTCs) (Boano et al., 2007). After decades of effort, 40 

modeling of non-Fickian transport of tracers continues to be a challenging problem. 41 

Beyond being a purely academic problem, observed heavy tails play a critical role in the 42 

transport of toxic chemicals where underestimation poses more risk, while overestimation 43 

can increase cleanup costs (de Barros et al., 2013).  44 

Among many others, three anomalous nonlocal models are most widely used in 45 

hydrology; these are continuous time random walks (CTRW), multi-rate mass transfer 46 

(MRMT), and fractional advection dispersion equations (FADE). These models are 47 

mathematically interrelated as reviewed in the supplementary material (SI). For example, 48 

an analytical relationship between MRMT and CTRW is established in Dentz and 49 
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Berkowitz (2003); the fractional-in-time and fractional-in-space ADEs are limit forms of 50 

CTRWs (Metzler and Klafter, 2000; Schumer et al., 2009). The fractional-in-time ADE 51 

can be shown to be mathematically equivalent to the fractional-in-space ADE via space-52 

time duality (Kelly and Meerschaert, 2017; 2019). In addition, the fractional 53 

mobile/immobile model (FMIM) is derived from the MRMT (with a special memory 54 

function (Schumer and Benson, 2003)). While the overarching frameworks are related, 55 

choices of special memory functions or residence time distributions (RTDs) have resulted 56 

in particularly popular sub-models, such as the CTRW with a truncated power law waiting 57 

time distribution function (CTRW-TPL), the single rate MRMT model (MRMT-1 58 

hereafter), the lognormal diffusion rate MRMT (MRMT-2 hereafter), and the power-law 59 

distribution of mass exchange rates MRMT model (MRMT-3 hereafter). In addition, new 60 

forms of FADEs were introduced in hydrology such as the fractional mobile/immobile 61 

(FMIM) model, the truncated time fractional model (TTFM), and the fractional in space 62 

transient storage model (FSTS). The governing equations and non-local characteristics of 63 

the above models are summarized in Table 1.  64 

The models in Table 1 are based on different underlying physical assumptions. Most 65 

obviously, they have different parameters each of which has a different physical 66 

interpretation and ranges of values. Despite significant progress in application of these 67 

models to describe solute transport in streams, the wide range of available sub-models and 68 

the complex relationships among them can be sources of confusion for selecting the best 69 

model for a given situation (e.g., solute transport in a river with significant hyporheic effect 70 

(SHE) that follows either a power-law or an exponential RTD). In particular, models with 71 

a large number of parameters also present the problem that they are difficult to optimize 72 
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and could suffer from equifinality. Therefore, one of the objectives of this work was to 73 

address the following question: taking the number of model parameters into account, which 74 

model best captures BTCs with heavy tails? To address this question, we briefly review the 75 

interrelations between the different models first (see SI). Then, we generate synthetic data 76 

corresponding to different residence time distributions using the MRMT-1, MRMT-2, and 77 

MRMT-3 models and test the ability of the other non-local models to reproduce the 78 

synthetic data; finally we further evaluate all the models using tracer data from rivers with 79 

and without SHE.  80 

This paper further explores the connection between space-fractional equations and other 81 

(CTRW and MRMT) approaches using numerical simulations and fits to observed tracer 82 

data to provide a clear physical and stochastic interpretation for space-fractional models in 83 

river flow hydrology. The FSTS model considered in our work is essentially the well-84 

known transient storage (TS) model (Bencala and Walters, 1983; Runkel, 1993) with the 85 

second-order dispersion term in the TS model replaced with a more general fractional 86 

derivative term that includes positive and negative skewness terms. The TS model was 87 

applied extensively to address questions involving conservative and reactive transport in 88 

streams and rivers in the past. A major advantage of the model is that its parameters can be 89 

directly measured in the field using detailed velocity measurements or tracer studies or 90 

both (Carr and Rehmann, 2007, Shen et al., 2010; Phanikumar et al., 2007). The second-91 

order dispersion term has been a source of some confusion in the TS modeling literature as 92 

some researchers found that a dispersion term was not needed to describe solute transport 93 

in some stream reaches (Gupta and Cvetkovic, 2000l; Worman, 1998). The analytical 94 

solution of the TS model (De Smedt et al., 2005) follows an exponential residence time 95 
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distribution representing solute retention in either surface storage zones or shallow 96 

hyporheic regions but not in deep hyporheic zones. This separation of surface and deep 97 

hyporheic storage contributions is important for biogeochemical processes within streams 98 

(e.g., denitrification) and has been the focus of previous research (e.g., Briggs et al., 2009). 99 

One of the objectives of the paper is to further evaluate the FSTS model for its ability to 100 

represent both surface and hyporheic storages within a stream reach and to compare the 101 

performance of this model with other nonlocal approaches.  102 

In section 2, we describe the different models considered in this paper. To understand 103 

the physical meaning of different parameters in the models, we evaluate the models using 104 

synthetic data generated using the three synthetic MRMT cases. In addition, we also 105 

compare parameter estimates based on the sFADE, FSTS, FMIM, TTFM, CTRW-TPL, 106 

MRMT-1, and MRMT-3 models with rhodamine WT (RWT) and sodium chloride tracer 107 

data collected in a total of 17 reaches in 4 different rivers. We also examine the physical 108 

interpretation of the backward dispersion term in the FSTS and sFADE models, given there 109 

is a debate related to previous studies as to whether this reflects a true physical process or 110 

an unphysical mathematical representation (Zhang et al., 2009). In addition, we compare 111 

the sFADE and FSTS models to understand if there is any advantage of FSTS over sFADE 112 

and other time non-local models. Finally, we summarize our results and findings in the 113 

Conclusion section.  114 
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2. Methods 115 

2.1 The FSTS and sFADE Model 116 

The FSTS model (Deng et al., 2006; Shen and Phanikumar, 2009) assumes a first-order 117 

mass exchange between the main channel and a storage zones (Eqs. (t1) and (t2) in Table 118 

1). C  is the solute concentration in the main channel 3( )ML−  (L is the unit of distance), sC  119 

is the concentration in the storage zone 3( )ML− , v  is the average water velocity 1( )LT − , 120 

D  is the coefficient of longitudinal dispersion 1( )L Tα − , x  is the space coordinate in the 121 

flow direction ( )L , t  is time ( )T , ε  is a first-order exchange coefficient 1( )T − , A  is the 122 

main channel cross-sectional area 2( )L , sA  is the size of the storage zones 2( )L ; LC  is the 123 

concentration associated with lateral inflow, and 
Lq  3 1 1( )L T L− −  is the lateral inflow rate. 124 

The order of the fractional Riemann-Liouville (RL) derivative in (1) is (1,2]α ∈ , while the 125 

parameter [ 1,1]β ∈ −  controls the skewness. When 0β =  dispersion in the main channel 126 

is symmetric. When 0β < , the solution of the FSTS is skewed backward, while when 127 

0β >  the solution is skewed forward (Zhang et al., 2005). When 2α =  the FSTS reduces 128 

to the classical TS model for any choice of skewness β .  129 

The fractional-in-space advection dispersion equation (sFADE) is a special case of the 130 

FSTS (with 0Lqε = = ), which only includes the mobile channel concentration (Eq. (t3) in 131 

Table 1). The analytical solution for sFADE with a pulse injection in an infinite domain 132 

(i.e. no boundary condition) (Benson et al., 2000) is used in this study. Since the RL 133 

derivative of a constant is not zero, specifying boundary conditions for the continuous slug 134 
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release and pulse injection of a tracer of a known constant concentration in a stream is 135 

problematic (Baeumer et al. 2018; Zhang et al, 2019). To mitigate this, in this work, the 136 

FSTS model is formulated by using the Caputo definition. The FSTS models were 137 

implemented using a mass conserving control volume method based on the Caputo 138 

fractional derivative as described in Zhang et al. (2005) and Zhang et al. (2007b). Boundary 139 

conditions for the FSTS model at the inlet and outlet correspond to a specified 140 

concentration and free drainage/zero-flux conditions, respectively (see Eq. (18) in Zhang 141 

et al., 2007b). Computational domain lengths of each case are summarized in Table S1 142 

(supplementary material).  143 

2.2 FMIM Model 144 

To explicitly model the mobile (main channel) and immobile (storage) zones using 145 

fractional calculus, Schumer et al. (2003) developed the fractional mobile immobile 146 

(FMIM) model (Eq. (t4) in Table 1). 
mC  is the main channel (mobile zone) concentration; 147 

γ  is the fractional derivative order; and sβ  ( )T γ  is the fractional capacity coefficient. The 148 

term 
t

γ

γ
∂
∂

 is the fractional RL derivative on the half-axis, v  is velocity 1( )LT − , and D  149 

2 1( )L T −  is the dispersion coefficient. When 1γ = , the FMIM reduces to the classic ADE 150 

with a retardation factor 1 sβ+ . An analytical solution to (5) with a pulse initial condition 151 

on an unbounded domain can be computed using a stable subordinator density (Schumer et 152 

al., 2003) and is implemented in FracFit (Kelly et al., 2017). The FMIM is a different 153 

model from the fractional-in-time ADE (FTADE, 
2

2

p p p
v D

t x x

γ

γ
∂ ∂ ∂= − +
∂ ∂ ∂

), which is a limit 154 
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form the CTRW (Metzler and Klafter, 2000). The stochastic process of the FMIM can be 155 

viewed as a power-law resident time (immobile state) among the mobile process (mobile 156 

state) (Benson and Meerschaert, 2009).  157 

2.3 The TTFM model 158 

Exponentially tempering heavy tailed power-law distributions in FMIM produces a 159 

waiting time distribution with a finite mean yielding a truncated time fractional ADE, i.e. 160 

the TTFM (Meerschaert et al., 2008); see Eq. (t5) in Table 1. In TTFM, γ  is functionally 161 

equivalent to that in FMIM; 0λ ≥  is the truncation parameter that controls the RTD 162 

transition from a power-law to an exponential. When 
1

t
λ

� , the mobile zone concentration 163 

decays as power-law as in FMIM; at later times 
1

t
λ

�  the tail of the mobile-phase BTC 164 

decays exponentially. 165 

2.4 MRMT Model 166 

    The basic-form of MRMT can be expressed as (Haggerty and Gorelick, 1995): 167 

2
,

2
1

n
im im m m

i

i

CC C C
v D

t t x x
β

=

∂∂ ∂ ∂+ = − +
∂ ∂ ∂ ∂∑                                       (1) 168 

,

,( )im i

i m im i

C
C C

t
ε

∂
= −

∂
                                                      (2) 169 

where mC  is the concentration of the mobile zone; ,im i
C  is the concentration of the i -th 170 

immobile zone. 
iε  is the first-order rate coefficient of between the i -th immobile zone and 171 

mobile zone. When 1i =  the MRMT reduces to the single rate mass exchange model (Eqs. 172 
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(t6) and (t7) in Table 1). For the case of a continuous distribution of rate coefficients, Eq. 173 

(1) can be written as Eq. (t8) in Table1. In this form, ( )b ε  is the PDF of the first order 174 

exchange rate coefficients and 
0

( )
tot

b dβ ε ε
∞

= ∫  denotes the capacity coefficient. 175 

STAMMT-L is a code for the MRMT model and offers user-specified mass exchange rate 176 

coefficients. In this study, we choose the single rate mass transfer model, the lognormal 177 

distribution diffusion rate model (Haggerty and Gorelick (1998)), and the power-law 178 

distribution of first-order mass-transfer rates model to generate the synthetic data sets. In 179 

Appendix B, we show their specific functional forms. 180 

2.5 CTRW Model 181 

    Continuous time random walk (CTRW) formulations have been widely used to quantify 182 

non-Fickian transport (Berkowitz et al., 2006; Burnell et al., 2017; Muljadi et al., 2017; 183 

Russian et al., 2016; Scher et al., 2010). In the CTRW framework, transport processes are 184 

conceptualized as a series of temporal transitions om space of particles. In one dimension, 185 

the Laplace transformed concentration ( , )C x u%  can be expressed as Eq. (t10) in Table 1. 186 

The memory function 
%

%

( )
( )

1 ( )

s
M s ts

s

φ
φ

≡
−

%  accounts for delays; here the notation %  denotes 187 

that the term is Laplace transformed; s  1( )T −  is the Laplace variable; 0C  is the initial 188 

condition. t  is the characteristic time; vφ  and Dφ  are the transport velocity and 189 

generalized dispersion coefficient respectively. The general CTRW model can show to be 190 

equivalent to the general MRMT model (Dentz and Berkowitz (2003)), yielding a one-to-191 

one relationship between the waiting time distribution ( )tφ  and the memory function ( )g t  192 
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(SI). The PDF ( )tφ  is the waiting time density, and can be regarded as the “heart” of the 193 

CTRW formulation. While CTRW and MRMT are mathematically equivalent, practical 194 

differences exist in typically applied formulations; e.g. the CTRW-TPL and the MRMT-3, 195 

which will both be used in this study, each have specific forms of ( )tφ  and ( )g t , so they 196 

are not the same model. For the CTRW-TPL, ( )sφ%  has the form: 197 

% 1 1

2 1 1 2 1 2
( ) (1 ) exp( ) ( , ) / ( , )s st t s t sδφ τ δ τ δ τ− −= + Γ − + Γ − , 0 2δ< <              (3)  198 

Where ( , )a zΓ  is the incomplete gamma function; δ  is the power law constant that 199 

denotes the proxy for the degree of velocity field heterogeneity; 1t  is a characteristic 200 

transition time that governs the onset of power law region and 2t  is a ‘‘cut-off” time that 201 

governs the crossover from power law to a decreasing exponential function ( 2 2 1/t tτ = ). 202 

For 1 2t t t� � , 
1

1( ) ( / )t t t
δφ − −∝ . The memory function is determined by substitution of 203 

the expression above into Eq. (t11) in Table 1 with 1t t= . 204 

2.6 Model Parameter Estimation 205 

The log-based root mean squared error (RMSE) was computed for each model 206 

simulation run as: 207 

2

10 10

1

(log ( ( , )) log ( ( , )))
n

sim i obs i

i

C x t C x t

RMSE
n

=

−
=
∑

                   (4) 208 

where n  is the number of time samples in each BTC to provide a measure of goodness of 209 

fit (GOF). As a result, areas of lower concentration in BTCs receive greater weight, than 210 

in the absence of log transformation, which is important for assessing anomalous transport 211 
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characteristics where heavy tails occur at lower concentrations. Smaller RMSE values 212 

indicate better agreement between simulated and observed datasets. Because of the 213 

characteristics of the logarithmic function, the absolute values of 10log ( )simC  and 214 

10log ( )obsC  become too large when obsC  and simC  get close to zero, thus we eliminate data 215 

points where simC  (and corresponding obsC ) are less than 
610−
 when calculating RMSE. 216 

Based on the shuffled complex evolution (SCE) algorithm (Duan et al., 1993; Muttil et al., 217 

2007), we developed the parallel version of SCE for parameter estimation in all presented 218 

cases. The parameters optimized with different models are shown in Table 1. The ADE 219 

model was only applied to the synthetic data due to its poor performance in simulating the 220 

late-time behavior of BTCs. 221 

The small-sample-corrected Akaike information metric (AICc) that takes both GOF and 222 

number of parameters into account is an effective parameter for model comparison and 223 

evaluation for models with varying parameter numbers and is given by (Akpa and 224 

Unuabonah, 2011; Anderson and Phanikumar, 2011; Saffron et al. 2006; Xia et al. 2018): 225 

2 ( 1)
AICc AIC

1

M M

n M

+= +
− −

                                                      (5) 226 

where AIC is the Akaike information criterion given by: 227 

AIC ln 2
S

n M
n

 = + 
 

                                                         (6) 228 

n  is the number of data points; M  is the number of model parameters. S  is the error sum 229 

of squares, which is log-transformed (similar to log based RMSE) to give the same weight 230 

to the tails. Smaller AICc values (may be negative) suggests the model is more justified by 231 

the data. 232 
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2.7 Sites Description 233 

The models examined in the present work were evaluated against synthetic breakthrough 234 

data generated using the STAMMT-L code for different models (MRMT-1, MRMT-2, and 235 

MRMT-3). In the synthetic data, breakthrough curves were generated at 360 m downstream 236 

from the injection location and a value of 0.3 m3s-1 was used for the discharge Q. In addition, 237 

field tracer data collected from natural streams were also used to test the models. Data from 238 

both large and small rivers were also used, including the Red Cedar River (RCR), Michigan, 239 

USA; the Grand River (GR), Michigan, USA; Uvas Creek (UC), California, USA; and the 240 

Ohio River (OR), Ohio, USA.  241 

The tracer study of RCR was reported in Phanikumar et al. (2007). RCR, a fourth-order 242 

stream in south central Michigan, originates as an outflow from Cedar Lake, Michigan, and 243 

flows through East Lansing. The study reach is between Hagadorn Bridge (on the east) and 244 

the Kalamazoo Street Bridge (on the west). The RCR meanders through the Michigan State 245 

University (MSU) campus over a stretch of approximately 5 km. Tracers were released at 246 

Hagadorn Bridge and samples were collected at three downstream sites (Farm Lane, 247 

Kellogg and Kalamazoo Bridges) whose distances from the injection point are 1.4 km, 3.1 248 

km, and 5.08 km, respectively.  249 

GR is a 420 km long tributary to Lake Michigan. It originates from the city of Grand 250 

Rapids and extends to Coopersville. The tracer study was conducted on a 40 km stretch of 251 

the main stem. The Ann Street Bridge near downtown Grand Rapids was selected as the 252 

injection point. Sampling was carried out at four downstream sites; the distances from the 253 

injection site are 4.558 km, 13.678 km, 28.357 km, and 37.608 km respectively (more 254 

details are given in Shen et al., 2008).  255 
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UC is a small cobble-bed stream located on the eastern slopes of the Santa Cruz 256 

mountains in California. The experiment was conducted near the headwaters of UC. The 257 

experimental reach includes a background monitoring station (15 m above the injection 258 

point) and five observation stations that are 38 m, 105 m, 281m, 433 m, 619 m downstream 259 

from the injection point, respectively (details are available in Avanzino and Bencala, 1972).  260 

 OR originates at the confluence of the Allegheny and Monongahela Rivers, and flows 261 

westward to the border of Pennsylvania, Ohio, and West Virginia, and then flows 262 

southwest-ward along the Ohio and West Virginia border. The observation sites were at 263 

21.405 km, 51.017 km, 64.697 km, 87.549 km, and 135.508 km from the injection point 264 

respectively (see Wilely, 1997 for details).  265 

3. Results  266 

3.1. Comparisons with Synthetic Data 267 

    Parameter values used to generate the synthetic data sets with STAMMT-L are shown 268 

in Table S2, and the corresponding BTCs in Figure 1. Concentration peaks and peak times 269 

of all BTCs are approximately equal. The BTC from MRMT-3 model has the heaviest tail, 270 

which characterizes the long-term mass exchange between the mainstream and hyporheic 271 

zones. The AICc values are summarized in Table 2 and the calibrated parameters are 272 

presented in Tables S3 - S7. Since the results from the sFADE simulation show negative 273 

skewness with β  values very close to -1 (see Tables S7, S11, S14 and S19), we present 274 

results mainly for FSTS 1β = − , but also those for FSTS 1β =  for comparison.  275 
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Figure 2 shows the comparison between simulated BTCs and synthetic data generated 276 

by MRMT-1. As we can see, all models can reproduce the synthetic BTC accurately. Both 277 

the RMSE and AICc values indicate that the FSTS model with 1β = −  shows the best 278 

agreement and the FSTS 1β =  model also produces a good agreement. The optimized α  279 

values of FSTS and sFADE are very close to 2 (Tables S5 and S7), meaning that they both 280 

reduce to the traditional TS and ADE model for this case (parameter β  is canceled out 281 

when 2α =  in FSTS and sFADE). In general, although the RMSE values are slightly 282 

different, all the models can fit the exponential case well. For the data set generated by the 283 

MRMT-2 (Figure 3), both the RMSE and AICc values indicate that the FSTS 1β = −  284 

performs best (AICc = -2.1721E3). The FSTS 1β = , however, shows the worst 285 

performance. The FMIM overestimates the tail of the BTC. Compared to FMIM, the TTFM 286 

yields a better simulation but still overestimates the tail. The estimated parameter values 287 

for FMIM are very similar to those of the TTFM (Table S3) and the better fitting of the tail 288 

for TTFM is due to the truncating effect by λ . Significantly, the CTRW-TPL and ADE 289 

cannot fit the BTC tail well in this case. For the data set generated by MRMT-3 (Figure 4), 290 

whose BTC has the most flattened tail, the simulation results of TTFM fit the data best 291 

(AICc = -1.8586E3). Next is the FMIM. The better simulation result of TTFM over the 292 

FMIM can be attributed to the truncation effect. But what should be pointed out is that the 293 

FSTS 1β = −  also gives comparable accuracy. The sFADE overestimates the late time 294 

concentration. On the other hand, the ADE and CTRW-TPL underestimate the late time 295 

part of the BTC.  296 

In general, FSTS 1β = −  captures BTCs with different type of heavy tails well. In the 297 

MRMT-2 case FSTS 1β = −  performs best and the TTFM gives better simulation than the 298 
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FMIM due to the truncating effect. In the power-law case, even though the TTFM and the 299 

FMIM give better results, the FSTS with 1β = −  also performs well and results in 300 

comparable accuracy. The FSTS with 1β = , ADE and CTRW-TPL, however, cannot 301 

effectively capture the heavy tailing cases.  302 

3.2. Comparisons with Tracer Studies in Natural Stream 303 

3.2.1 Red Cedar River  304 

Optimal parameter values of sFADE, FMIM, TTFM, CTRW-TPL, MRMT-1, MRMT-305 

3 and FSTS models estimated for tracer experiments conducted on the RCR are presented 306 

in Table S8 - S12. Figure 5 - 9 show the comparisons between the simulation and the 307 

observed data. The AICc values are summarized in Table S13. Phanikumar et al. (2007) 308 

combined tracer data with wavelet decomposition of acoustic Doppler current profiler data 309 

to separate surface storage from hyporheic retention and indicated that reach 1 was 310 

dominated by surface storage. In contrast, hyporheic exchange mainly contributed to 311 

transient storage in reach 3 of the RCR. Meanwhile, reach 2 has comparable contributions 312 

of both surface storage and hyporheic exchange. Consistent with this, MRMT-1 is superior 313 

to MRMT-3 in reach 1 (Figure 7). For reach 3, the MRMT-3 fits the tail of BTC well but 314 

overestimates the leading edge which is better simulated by MRMT-1. However, MRMT-315 

1 underestimates the late time concentrations due to the limitation of an exponential RTD. 316 

Similar results were also found by Gooseff et al. (2003). Both the FSTS 1β =  and the 317 

FSTS 1β = −  fit the observed tracer concentration in reaches 1 and 2 of the RCR well 318 

(Figure 8). For reach 3, the positive skewness ( 1β = − ) of FSTS fits the observed data well 319 

for early times from the start of tracer arrival through the passage of the advection peak, 320 

but it fits the data poorly at late-time ( 4t >  hours). However, the FSTS model with 321 
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negative skewness ( 1β = − ) fits better over the late-time portion of the BTC of RCR reach 322 

3.  323 

The sFADE fits the leading edge well for all the three reaches but predicts longer 324 

residence times than the observed data in reach 1 and reach 2. For reach 3, the sFADE fits 325 

both the early and late time concentration well. Similarly, the FMIM overestimates the tail 326 

in reach 1 and reach 2 but fits the tailing of BTC in reach 3 well. Compared to the FMIM, 327 

the TTFM yields a better simulation especially for the late time concentration, but still 328 

overestimates the tails in reach 1 and reach 2. The CTRW-TPL (Figure 9) overestimates 329 

late time concentration at the level lower than ~100 but slightly underestimates the 330 

concentration at level of about 100 - 101 in reach 1. The truncation time 2t  is very large, 331 

indicating that transition to an exponential tail has not yet occurred. In reach 2 and reach 3, 332 

the CTRW-TPL fits the tail well but overestimates the leading edge. The RMSE values 333 

show that the FSTS 1β = −  gives the best accuracy over all three reaches. One the other 334 

hand, the AICc values indicate that the FSTS 1β = −  only performs best in reach 1 and 335 

reach 2. For reach 3, however, the FMIM is the best model. The reason is that the FMIM 336 

has less parameters than the FSTS but has comparable accuracy.  337 

3.2.2. Grand River 338 

The GR is a relatively large river and the tracer study conducted in all 4 reaches of it 339 

does not show significant hyporheic zone (storage) effects. Correspondingly, the BTCs of 340 

the observed data do not show heavy tailing. Figure S1 - S5 shows comparisons between 341 

the simulation results and observed data. Optimal parameter values for these simulations 342 

are listed in Table S14 - S18 and the AICc values are shown in Table S19.  343 
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As we can see, all models fit reach 3 and reach 4 well except the CTRW-TPL (Figure 344 

S5) and MRMT-3 (Figure S3), which overestimate the early time concentration. For reach 345 

1 and reach 2, however, the MRMT-1 underestimates the late-time concentration, while 346 

the MRMT-3 model overestimates it. Similarly, the sFADE (Figure S1) and the FMIM 347 

(Figure S2) models overestimate the late time part BTC in reach 1 and reach 2. Meanwhile, 348 

the TTFM gives a better match than FMIM since it can better capture the tail of BTC. 349 

Similarly, the CTRW-TPL (Figure S5) fits the tail well but shows a deviation at early times. 350 

The AICc values suggest that the FSTS model (both 1β =  and 1β = − ) perform better 351 

than others. Given that the α  values are very close to 2 for the FSTS, the better 352 

performance may be mainly attributed to the TS term, which is consistent with the MRMT-353 

1 outperforming the MRMT-3. The limited resolution of the observations, especially at 354 

lower concentrations, can lead to underestimation of hyporheic exchange (Drummond et 355 

al., 2012); this prevents us from drawing a strong conclusion on which FSTS model is best 356 

(between 1β =  and 1β = − ), but for the GR, the FSTS 1β = −  is still a promising model. 357 

3.2.3 Ohio River  358 

Figures S6 - S8 show the simulation of OR tracer data. Best fitting parameters for these 359 

simulations are presented in Table S20 - S22. The OR tracer data are best simulated by the 360 

FSTS model. The optimized velocity values in sFADE and FMIM (3.0 - 5.0 ms-1) are 361 

significantly larger than observations (0.044 - 0.065 ms-1) (Wiley, 1997), suggesting 362 

perhaps an issue of equifinality. The FSTS simulations with positive and negative skewness 363 

fit the data well except for reach 1 (Figure S8), where the case with positive skewness 364 

underestimates the late-time concentration, while FSTS 1β = −  gives a better fit. 365 
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Meanwhile, the α  values for both models are very close to 2 (except for reach 1 for FSTS 366 

1β = − ) indicating that the tails are mainly explained by the TS term. For reach 1, part of 367 

the tailing phenomenon of the BTC is explained by the space fractional term in FSTS 368 

1β = − . Both the sFADE and the FMIM tend to overestimate the tail of BTC. 369 

3.2.4 Uvas Creek 370 

For further comparison between the FSTS 1β =  and 1β = − , we only use these two 371 

models to fit the UC experiment data. As we can see from Figure S9, FSTS with both 372 

positive and negative skewness fit observed data of UC well. In reaches 3, 4, and 5, 373 

however, FSTS with negative skewness reproduces the experiment data better than that 374 

with positive FSTS, especially for the peak and late time portion of BTCs. The calibrated 375 

parameters are listed in Table S23. This may indicate that, as the center of mass flows 376 

downstream with water, more particles experience retention in the storage zones (seems to 377 

be jumped to the upstream direction relative to the plume mass center) and this begins to 378 

affect the shape of BTCs which can be better described by FSTS 1β = − . 379 

3.3 Model Properties 380 

To further explore the heavy tail characteristics exhibited by each model, the sensitivity 381 

of the BTC tails was tested. Figure S10 shows the BTCs generated by the sFADE with 382 

different α  values (the other parameter values are fixed as: 1β = − , 1v = , and 5D = ). 383 

Obviously, as well known, smaller values of α  corresponds to a heavier tail. Figure S11 384 

is the BTCs generated by the FSTS with different ε  values (the other parameter values are 385 
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fixed as: 1β = , 5D = , 0.8v = , 1.6α = , and 3sA = ). This model assumes the Lévy 386 

jumps (backward relative to mass center) with the exponential RTD for the tracer’s 387 

transport. Compared to the purely Lévy jumps ( 0ε = ), this mixed transport makes more 388 

mass concentrated in the middle of the tail rather than the very late time. This characteristic 389 

can be very useful or reasonable, for example, the CTRW-TPL and sFADE underestimate 390 

the middle of the tail of BTC in GR reach 2 which can be well simulated by the FSTS. 391 

Thus, the FSTS 1β = −  is more flexible when simulating the late time concentration. The 392 

non-Fickian nature of FMIM is governed by two independent parameters ( sβ  and γ ). 393 

When set different sβ  values (Figure S12, the other parameters are set as: 2D = , 0.4v = , 394 

and 0.63γ = ), the slope of the tail doesn’t change but the power-law tail appears at a lower 395 

concentration magnitude as sβ  decreases. It is conceivable that when set 0sβ = , the BTC 396 

will have no heavy tail, i.e., the FMIM reduces to the ADE. On the other hand, when set 397 

different γ  values (Figure S13, other parameters are fixed as: 2D = , 0.4v = , and 1sβ = ) 398 

the slope of the tail change significantly, which is similar to the function of α  in sFADE. 399 

In the MRMT-3, k  is the main parameter that governs the non-Fickian transport feature. 400 

Figure S14 shows the BTCs from MRMT-3 with different values of k  (other parameters 401 

are fixed as: 0.8v = , 1D = , 1totβ = , max 0.5ε = , and min 1E 6ε = − ). As we can see, the 402 

tail is heavier as k  decreases. The heavy tail also appears at significant different 403 

concentration magnitudes with different k  (i.e., k  can influence both the slope and the 404 

concentration magnitude of the tail). In the CTRW-TPL, the δ  is main factor that governs 405 

the non-local feature. However, as we can see form Figure S15 (other parameters are set 406 

as: 0.8v = , 1D = , 1.6β = , 
1log10( ) 5t = −  and 

2log10( ) 8t = ), the slope of the tail is not 407 
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very sensitive to the value of δ , which, however, can significant influence both the peak 408 

concentration and the peak time. In general, the λ  in TTFM, the minε  in MRMT-3, and the 409 

2t  in CTRW-TPL all have similar functions (i.e., the truncated power-law). Take the result 410 

from CTRW-TPL fitting the synthetic data generated by MRMT-2 for example, when set 411 

different truncating time 2t  (the other parameter values are the same as those estimated for 412 

MRMT-2 synthetic data) the tails of BTCs decrease sharply at different times (Figure S16).  413 

4. Discussion 414 

4.1 The Physical Interpretation of β  in FSTS and sFADE 415 

The stochastic model underlying the FSTS and the sFADE equations are solute particles 416 

undergoing deterministic drift with random heavy tailed jumps superimposed when solute 417 

particles are mobile. To date, a controversy associated with such heavy tailed random 418 

jumps is that long-distance and long-term backward dispersion (i.e., negative skewness in 419 

FSTS and sFADE) are unphysical (Zhang et al., 2009); that is, the physical interpretation 420 

of this backward skewness, when applied to streamflow, remains controversial (Deng et 421 

al., 2004; Zhang et al., 2005; Zhang et al., 2009) as it does not make sense for particles to 422 

make such large upstream jumps traveling against the mean flow. Our results, however, 423 

show that for our best models the optimized values of β  are very close to -1, indicating 424 

that models with negative skewness may be suitable for solute transport modeling, 425 

particularly for cases with SHE. In order to reconcile this, we must understand the physical 426 

meaning of the parameter β . To this end, we present BTCs generated by the FSTS model 427 
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for different values of β  in Appendix B. In an open channel system, many factors 428 

including channel morphology can affect the transport of solutes. The existence of 429 

hyporheic zones (solutes moving into and out of near-bed sediments) or surface transient 430 

storage (Ensign et al., 2005), such as side pools and other in-channel features, can both 431 

retain solutes. Other immobile objects can also hinder the migration of solutes in the mobile 432 

phase, such as fallen trees, vegetation, large stones in the river bottom, and organic debris 433 

(Briggs, et al, 2009). Kelly and Meerschaert (2017; 2019) argued that when the bulk of the 434 

plume travels downstream, since the center of mass moves downstream while the solute 435 

particles remains at rest for a long time due to retention, the particle seems to be displaced 436 

in the upstream direction relative to the plume center of mass. More importantly, Kelly and 437 

Meerschaert (2017; 2019) mathematically proved that long upstream particle jumps 438 

(described by negative skewed space-fractional models) and long resting times (described 439 

by time-fractional models) are two sides of the same coin by using the space-time duality 440 

(Appendix A). Our results further reinforce this message via fitting of real-world data. Thus, 441 

as long as one is willing to accept this physical and mathematical interpretation. the FSTS 442 

model with 1β = −  is a valid representation of the underlying physics of such situation.  443 

4.2 Analysis of Model Performance 444 

4.2.1 The sFADE model 445 

In our results, the sFADE tends to overestimate the late time concentration in the natural 446 

reaches without SHE. In the heavy tailing synthetic cases (i.e. data from MRMT-2 and 447 

MRMT-3), the sFADE shows a poorer performance than the FMIM. As is known, a smaller 448 

α  correspond to a higher probability long distance jumps (i.e. a more flatten tail). 449 
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Compared to the FMIM, the major limitation of sFADE is that it does not explicitly 450 

distinguish mobile and immobile phases (Boano et al., 2007, Zhang et al., 2005). Zhang et 451 

al. (2009) pointed out that the FMIM can explain mass decline as it describes the dynamic 452 

partitioning of solute mass into the immobile phase, and the rate coefficient between the 453 

mobile and immobile phases was described by the fractional derivative in time. While, the 454 

pure sFADE (Eq. (t3) in Table 1) cannot account for the loss of mobile mass, it can be 455 

described by FSTS (Eqs. (t1) and (t2) in Table 1), which uses a first-order mass transfer 456 

between mobile and immobile regions. But one of the advantages of sFADE over the time 457 

nonlocal methods is that it can simulate the early arrivals by setting 0β >  (Zhang et al., 458 

2009). 459 

4.2.2 The FMIM and TTFM models 460 

As presented in section 3.3, the FMIM has two independent parameters ( sβ  and γ ) that 461 

characterize nonlocal behavior., A larger value of sβ  and a smaller γ  correspond to a 462 

flatter tail. The parameter sβ  in FMIM has a physical interpretation and it can be defined 463 

as the ratio of volume of the immobile to mobile zones (Schumer et al., 2003), or as the 464 

ratio of expected time in the immobile versus mobile zones (Benson and Meerschaert, 465 

2009). γ  denotes the power-law decline rate of concentration with time. We find that the 466 

FMIM fits the cases with SHE (reach 3 in RCR and the synthetic case by MRMT-3) very 467 

well but tends to overestimate tailing in cases without SHE. The TTFM provides additional 468 

flexibility by exponentially truncating the tail via an additional parameter λ  (Meerschaert 469 

et al., 2008) which is functionally equivalent to 
minε . Note, however, that the gain may be 470 
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minimal: although the RMSE values show a slightly better performance of TTFM, the 471 

AICc indicates that the FMIM is better due to lesser number of parameters.  472 

4.2.3 The CTRW-TPL model 473 

For the synthetic cases, the CTRW-TPL performs poorly, particularly in capturing heavy 474 

tailing. When fitting the experimental data, it tends to overestimate the leading edge of 475 

BTC. Three additional parameters over an ADE are of interest (
1t , 

2t  and δ ). 
1t  roughly 476 

sets a starting point for power law tailing that is cut off at 
2t , but as pointed out by Haggerty 477 

et al. (2000), 1t  is of minor importance when capturing the late-time tailing. In our tests, 478 

the slope of the BTC tail does not change significantly (Figure S15), this may be due to the 479 

fact that the power law regime (from 1t  to 2t ) is not long enough. However, a tempered 480 

power law can have an observed or inferred slope due to the interaction of the tempering 481 

time. When truncated at a specific time ( 2t ) the tail of BTC declines rapidly (exponentially) 482 

when 2t t�  (see Figure S16). But this decrease is too quick to effectively capture the tail 483 

from the synthetic BTC. Thus, in this context, it appears that the CTRW-TPL has limited 484 

ability to effectively capture different types of heavy tails, although it has had much success 485 

in other applications (e.g. Burnell et al. (2017)).  486 

4.2.4 The MRMT-1 and MRMT-3 models 487 

In the cases without SHE, the MRMT-1 performs well. But it underestimates the tail of 488 

the BTC significantly. In the MRMT-1, RTD of the solute in storage is assumed to be 489 

exponential (Thorsten Wagener, 2002). This is a significant limitation since the exponential 490 

RTD is not appropriate for characterizing late-time behaviors, which are better 491 
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characterized by power-law tailing, as solutes are retained in the storage zones for 492 

prolonged periods of time (Aubeneau et al., 2014; Gooseff et al., 2003). The MRMT-3 can 493 

give a better match for the late time data but presents higher concentrations for early 494 

arrivals, which are still better simulated by MRMT-1. In MRMT-3, the parameter k  495 

governs the power-law distribution of mass exchange rate at the range of min maxε ε ε< < . 496 

minε  and maxε  are functionally equivalent to the inverse of the 2t  and 1t  (Lu et al. 2018). 497 

Thus, k  can control the slope of the late-time BTC in a log-log plot (a larger k  leads to a 498 

faster decline of the late-time BTC). However, k  also impacts the concentration 499 

magnitudes at which the heavy tail appears in an irregular way. In our tests, the 500 

concentration magnitude (where the heavy tail occurs) increase as k  decreases in the range 501 

from 3.5 to 2.0 (Figure S14). When 2.0k < , the tails of BTCs are flatter as k  decreases; 502 

however, more solute mass is concentrated in the peaks and heavy tails appear at 503 

significantly lower concentrations. With the enhancement of trapping effects, more solute 504 

trends to be distributed in the tail rather than the peak of the BTC. So, heavier trailing is 505 

more likely to begin at higher concentrations similar to the effect of the α  in sFADE 506 

(Figure S10) and γ  in MFIM (Figure S13). Thus, the changes of k  in the MRMT-3 cause 507 

the irregular variation of the BTC tail and may result in inappropriate simulations. 508 

4.2.5 The FSTS model with 1β = −  509 

In our study, both the RMSE and the AICc values indicate that the FSTS 1β = −  model 510 

performs well in all cases. The FSTS is an extension of the TS model with a fractional 511 

dispersion term in the mobile zone. In the FSTS, the tracer particles experience Lévy jumps 512 

while mobile, and exponential RTDs when trapped. When 1β = −  the space fractional 513 
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term predicts large distance of upstream migrations. But this upstream migration is relative 514 

to the center of mass (that moves downstream with flowing water) rather than a stationary 515 

river bed. In this context, it can be regarded as backward migration relative to the center of 516 

mass of the migrating tracer plume when part of the tracer mass has a lower velocity 517 

relative to the center of mass (see Figure 10). In rivers, turbulent eddies, meander bends 518 

and pools, side pockets, local scale river-bed topography variations, fallen trees within a 519 

channel, could all lead to lower transport velocity of the trapped solutes relative to the 520 

center of mass of the tracer plume. Additionally, Zhang et al. (2019) showed that the 521 

negatively skewed sFADE is also physical meaningful when describing the non-Fickan 522 

transport in a river and could capture the heavy tail in a BTC similar to the time fractional 523 

ADE. Thus, when trapping in the physical system is short-term retention (exponential 524 

RTD), it can be explicitly modeled in the FSTS using a first order exchange with an 525 

immobile region as in the classic TS model (e.g., reach 1 and reach 2 in RCR). For the 526 

long-term trapping (e.g., larger hyporheic zones or deep hyporheic flow paths) heavy tails 527 

are captured by the space fractional term with 1β = −  (e.g., reach 1 in Ohio and reach 3 in 528 

RCR). Again, here we invoke the mathematical equivalence and interpretation of Kelly and 529 

Meershaert (2017; 2019) that the fractional in space jumps are equivalent to heavy tailing 530 

waiting due to space-time duality. The FSTS seems to hit the sweet spot between other 531 

models. Only having surface transient storage (TS) typically underestimates late time 532 

concentrations in cases with SHE, while the sFADE tends to overestimate late time 533 

concentrations there. In the FSTS, these two seem to better balanced. Whether the model 534 

is truly physical or purely mathematically is likely still open to debate and comes down to 535 

whether one accepts the interpretation of the backward skewed space fractional process as 536 
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representing lower velocities relative to the center of mass of the tracer plume rather than 537 

upstream jumps of tracer particles relative to the river bed. Regardless, the FSTS was able 538 

to describe different types of observed tailing behaviors. Although the parameters in a 539 

model may have interactions with one another, the above sensitivity analysis of the BTC 540 

tail for the isolated parameter can also explain the characteristics of the models used in this 541 

study. 542 

4.3 Comparation of the FSTS 1β = −  and the TTFM 543 

Although the TTFM truncates the power-law tail, the resulting model can be used to 544 

represent transport in streams. However, as we can see from Figure S16, the truncation can 545 

lead to a decay of tracer mass that is too fast compared to the tail of the synthetic data 546 

generated using MRMT-2. The rationale behind truncation of tails in the TTFM is that 547 

natural rivers are finite systems and transport of tracers must eventually converge to a finite 548 

mean and variance (Aubeneau et al., 2014; 2016), even at very late times. But when tracers 549 

are trapped in immobile zones and never come out (i.e. infinite residence time), those 550 

assumptions are violated. Exchanges of water and solutes with the immobile zone will 551 

produce a delay in solute transport relative to the mainstream flow and lead to long tails in 552 

concentration BTCs (Boano et al., 2007). Different storage zones (e.g., surface storage 553 

zone and the deep hyporheic zone) can also lead to different types of RTD. The power-law 554 

tail (mathematically represented by the space fractional term in the FSTS) balanced by the 555 

exponential RTD term in the FSTS perform better in capturing the BTC. 556 
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5. Conclusions 557 

Although a rigorous, but complex mathematical interrelation exists between CTRW, 558 

MRMT and FADE models, in their most commonly applied formats differences in memory 559 

or RTD functions lead to different classes of non-Fickian sub-models. In general, these 560 

models have different numbers of parameters with varying physical interpretations. The 561 

highlight of this study is a comparison and evaluation of seven anomalous transport models 562 

summarized in Table 1. Parameter estimation for these seven models was performed with 563 

both synthetic and field data, and the fits were quantitatively compared with a log-based 564 

RMSE and corrected AIC (AICc) metrics.  565 

Compared to sFADE and CTRW-TPL, and MRMT-3, the FMIM performs better. While 566 

the FMIM can overestimate late time tailing in concentrations, improvements with the 567 

truncating scheme in TTFM appears limited, as the truncating time may lead to the decline 568 

of concentration that is too fast. In contrast, the FSTS ( 1β = − ) assuming long-term 569 

upstream jumps (mathematically equivalent to power-law waiting times due to space-time 570 

duality; see Appendix A) that well balanced by an exponential RTD could better estimates 571 

both early and late-time portions of the BTCs. Both the RMSE and AICc indicate that the 572 

FSTS with negative skewness estimates the BTCs with greater fidelity both with and 573 

without SHE. In addition, the FSTS model could also serve as a useful and efficient 574 

diagnostic tool to assess the nature of storage in a stream reach (surface versus deep 575 

hyporheic). Thus, by fitting the tracer data to the FSTS model with positive ( 1β = ) and 576 

negative ( 1β = − ) skewness values, users can quickly assess the relative importance of 577 

hyporheic storage in a given reach so that more appropriate models can be selected for 578 
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further analysis. However, whether the negatively skewed space fractional term is truly 579 

physically meaningful is still open to debate. And it depends on whether one accepts the 580 

interpretation of this term as representing a slower transport velocity (or waiting) relative 581 

to the mass center rather than upstream jumps relative to the river bed. Additionally, our 582 

current conclusions should only be applied in the context of conservative transport as non-583 

conservative (reactive) transport in systems displaying anomalous transport can be very 584 

different from that predicting by just naively adding chemical reaction terms to the 585 

governing equations (Bolster et al., 2010, Bolster et al., 2017).  586 
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Appendix A. Space-Time Duality  593 

The negatively-skewed derivative in the sFADE and FSTS models with 1β = −  models 594 

long (power-law) upstream jumps. As noted by Zhang et al. (2009), these upstream jumps 595 

(or negative dispersion) appear unphysical. However, due to the advection term in the 596 

sFADE, these upstream jumps are relative to the center of mass in the underlying random 597 

walk. Hence, in the sFADE model, a particle moves downstream due to advection and then 598 

may jump back upstream. In the fractional-in-time ADE model, the particle remains 599 

upstream while the bulk of the plume moves downstream. In both models, the particle ends 600 

up behind the plume center of mass, resulting in an effective delay, or retention. Hence, 601 

there are two separative and equivalent descriptions for the same underlying hydrological 602 

mechanism (retention), thus resolving the controversy between the sFADE and the 603 

fractional-time ADE for river flows. 604 

This simple observation may be understood mathematically using space-time duality 605 

(Baeumer et al., 2009; Kelly and Meerschaert, 2017; 2019). For simplicity, consider the 606 

sFADE (t3) with 1β = − , 0v = , and 1D = : 607 

( , ) ( , )
( )

C x t C x t
t x

α

α
∂ ∂=
∂ ∂ −

                                                          (A.1) 608 

Applying a Fourier transform (FT) with respect to both x and t yields: 609 

( ) ˆ( ) ( , ) 0i ik C k
αω ω − − =                                                          (A.2) 610 

where k  is the wave number and ω  is the angular frequency. The bracketed dispersion 611 

relationship is equivalent to ( ) ( )i ik
γω = −  where 1/γ α= . Substituting back into (A.1) 612 

and inverting the Fourier transform leads to the dual equation: 613 
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( , ) ( , )C x t C x t
t x

γ

γ
∂ ∂= −
∂ ∂

                                                     (A.3) 614 

which is a special case of the fractional-in-time ADE with 1v =  and 0D = , where the left-615 

hand side uses a Caputo derivative. Note that the order of the time-fractional derivative γ  616 

ranges from 0.5 to 1. This may be made rigorous using a complex plane argument (Kelly 617 

and Meerschaert, 2017). If the advection term in the sFADE is retained, it is shown in 618 

Kelly and Meerschaert, 2017) that the dual time-fractional PDE involves the fractional 619 

material derivative (Sokolov and Metzler, 2003). The resulting coupled space-time 620 

fractional PDE (see Equation (28) in Kelly and Meerschaert (2017)) governs power-law 621 

waiting times in a moving reference frame, or retention relative to plume center of mass. 622 

Using this duality analysis, negative derivative term in the sFADE and the FSTS can 623 

effectively model power-law retention. We note that this analysis is restricted to fractional 624 

models with constant coefficients in either an unbounded domain or a reflecting boundary 625 

at 0x = . 626 
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Appendix B: BTCs Generated by the FSTS Model with Different Values 627 

of β  628 

The BTCs generated by the FSTS model with different values of β  are presented in 629 

Figure D1 (other parameters were fixed as: 0.7D = , 1.9α = , 1.2v = , 5sA = , and 630 

33Eε −= ). The total mass under each of the BTCs is the same for all values of β . As we 631 

can see from Figure Appendix B1. When 1β = −  the BTC shows a flattened tail at late 632 

times and a sharp leading edge. When 1β = , however, the resulting BTC has a flattened 633 

leading edge and the tail is steep instead (Figure S4 also shows similar phenomenon). Thus, 634 

a larger β  value results in a BTC with a more flattened leading edge. When 0β =  the 635 

BTC is approximate symmetric with heavy leading edge and tailing on both sides. In 636 

addition, we note that the peaks of all BTCs are almost synchronous regardless of the value 637 

of β , as these are dictated mostly by the deterministic drift. 638 
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Table 806 

Table 1. Summary of the nonlocal models used in this study. 807 
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δφ − −∝ . For 2t t? , waiting time distribution is exponential. The 
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Table 2. AICc (×1e3) values for the parameter fits using synthetic data. 809 

model MRMT-1 MRMT-2 MRMT-3 

FSTS 1β =  -0.4361 0.2180 0.7049 

FSTS 1β = −  -0.5221 -0.6413 -1.0738 

FMIM -0.3282 -0.5278 -1.8552 

TTFM -0.3212 -0.5925 -1.8586 

sFADE -0.3072 -0.5639 -0.6090 

CTRW-TPL -0.3117 -0.2172 -0.0740 

ADE  -0.4938 0.1474 0.3726 

810 
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Figures 811 

Figure 1. Synthetic data generated by MRMT-1 (blue), MRMT-2 (red), and MRMT-3 812 

(yellow). 813 

Figure 2. Comparisons of the simulations for synthetic data (generated by MRMT-1). 814 

Figure 3. Comparisons of the simulations for synthetic data (generated by MRMT-2). 815 

Figure 4. Comparisons of the simulations for synthetic data (generated by MRMT-3). 816 

Figure 5. sFADE simulated BTCs and observations for Red Cedar River. 817 

Figure 6. FMIM and TTFM simulated BTCs and observations for Red Cedar River.  818 

Figure 7. MRMT-1 and MRMT-2 simulated BTCs and observations for Red Cedar 819 

River. 820 

Figure 8. FSTS 1β =  and FSTS 1β = −  simulated BTCs and observations for Red 821 

Cedar River. 822 

Figure 9. CTRW-TPL simulated BTCs and observations for Red Cedar River. 823 

Figure 10. Schematic illustrating solute transport processes within a stream reach with 824 

exchange between surface storage zones and the main channel. 825 

Figure Appendix B. The BTCs based on different β  values of FSTS model. The other 826 

parameters are fixed as: 0.7D = , 1.9α = , 1.2v = , 0.003ε = , and 5sA = . 827 
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